piskoviste:mathjax
Matematika
Axiomy
- test
- test
$$v = {{π × d × n} \over 60}$$
mathjax
$$ E = mc^2 $$
$a^2 + b^2 = c^2$
$a^2 + b^2 = c^2$
\(1+2+\dots+n=\frac{n(n+1)}{2}\)
\(1+2+\dots+n=\frac{n(n+1)}{2}\)
\(\frac{a}{b}\)
\(\frac{a}{b}\)
$$ \frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x) $$
$$ \frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x) $$
\[ \sin A \cos B = \frac{1}{2}\left[ \sin(A-B)+\sin(A+B) \right] \]
\[ \sin A \cos B = \frac{1}{2}\left[ \sin(A-B)+\sin(A+B) \right] \]
\begin{align*} e^x & = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \\ & = \sum_{n\geq 0} \frac{x^n}{n!} \end{align*}
\begin{align*} e^x & = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \\ & = \sum_{n\geq 0} \frac{x^n}{n!} \end{align*}
Množiny
Průnik
$$\cap_{i=1}^{n}A_{i}=A_{1}\cap A_{2}\cap\dots\cap A_{n}$$
$$\mathbb Z^{+}=\mathbb N\cup\{0\}=\{0,1,2,3,\dots\}$$
$$\Rightarrow$$
https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
Odkazy
piskoviste/mathjax.txt · Poslední úprava: 2020/11/23 06:16 autor: Zdeněk Havlík